Abstract

The synovial cavity constitutes the ideal stage to study the interplay between microbial Toll-like receptor (TLR) ligands and cytokines. Infiltrated leukocytes and synovial fibroblasts produce cytokine- and chemokine-induced proteases for remodeling the extracellular matrix. The regulation of chemokine function for attraction and activation of leukocytes constitutes a key feature in host immunity and resolution of inflammation after infection. Enhanced levels of the CXC chemokine ligand (CXCL9)/monokine induced by interferon-gamma (IFN-gamma) and CXCL11/IFN-inducible T cell alpha chemoattractant, two chemoattractants for activated T cells and natural killer cells, and ligands for CXC chemokine receptor 3 (CXCR3) were detected in the synovial fluid of septic arthritis compared with osteo- and crystal arthritis patients. In vitro, IFN-gamma and TLR3 ligation by double-stranded RNA (dsRNA) induced the expression of CXCL9 and CXCL11 in leukocytes and skin-muscle fibroblasts, whereas ligation of TLR2, TLR4, TLR5, and TLR9 by peptidoglycan (PGN), lipopolysaccharide (LPS), flagellin, and unmethylated CpG oligonucleotides, respectively, did not. PGN and LPS, but not unmethylated CpG oligonucleotides, even inhibited IFN-gamma-induced CXCL9 and CXCL11 expression in leukocytes. In sharp contrast, in fibroblasts, the TLR ligands PGN, dsRNA, LPS, and flagellin synergized with IFN-gamma for the production of CXCL9 and CXCL11. Although TLR ligands stimulate leukocytes to produce CXCL8/interleukin-8 during the early innate defense, they contribute less to the production of CXCR3 ligands, whereas fibroblasts are important sources of CXCR3 ligands. These results illustrate the complex interaction between cytokines and TLR ligands in infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.