Abstract

Extracellular electron transfer (EET) allows microorganisms to perform anaerobic respiration using insoluble electron acceptors, including minerals and electrodes. EET-based applications require efficient electron transfer between living and non-living systems. To improve EET efficiency, the TiO2@TiN nanocomposite was used to form hybrid biofilms with Shewanella loihica PV-4 (PV-4). Chronoamperometry showed that peak current was increased 4.6-fold via the addition of the TiO2@TiN nanocomposite. Different biofilms were further tested in a dual-chamber microbial fuel cell. The PV-4 biofilm resulted a maximum power density of 33.4 mW/m2, while the hybrid biofilm of the TiO2@TiN nanocomposite with PV-4 yielded a 92.8% increase of power density. Electrochemical impedance spectroscopy analyses showed a lower electron-transfer resistance in the hybrid biofilm. Biological measurements revealed that both flavin secretion and cytochrome c expression were increased when the TiO2@TiN nanocomposite presented. These results demonstrated that the TiO2@TiN nanocomposite could synergistically enhance the EET of PV-4 through altering its metabolism. Our findings provide a new strategy for optimizing biotic-abiotic interactions in bioelectrochemical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call