Abstract

A number of synapse devices have been intensively studied for the neuromorphic system which is the next-generation energy-efficient computing method. Among these various types of synapse devices, photonic synapse devices recently attracted significant attention. In particular, the photonic synapse devices using persistent photoconductivity (PPC) phenomena in oxide semiconductors are receiving much attention due to the similarity between relaxation characteristics of PPC phenomena and Ca2+ dynamics of biological synapses. However, these devices have limitations in its controllability of the relaxation characteristics of PPC behaviors. To utilize the oxide semiconductor as photonic synapse devices, relaxation behavior needs to be accurately controlled. In this study, a photonic synapse device with controlled relaxation characteristics by using an oxide semiconductor and a ferroelectric layer is demonstrated. This device exploits the PPC characteristics to demonstrate synaptic functions including short-term plasticity, paired-pulse facilitation (PPF), and long-term plasticity (LTP). The relaxation properties are controlled by the polarization of the ferroelectric layer, and this polarization is used to control the amount by which the conductance levels increase during PPF operation and to enhance LTP characteristics. This study provides an important step toward the development of photonic synapses with tunable synaptic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.