Abstract

During treatment of nuclear fuel in the Plutonium/URanium EXtraction (PUREX) process, the extractant tri-n-butyl phosphate (TBP) is known to degrade to dibutylphosphoric acid (HDBP), which increases the extraction of metal ions, thereby inhibiting their stripping from the organic phase. To better understand this phenomenon, we investigated how mixtures of TBP and HDBP influenced the extraction of metal, nitric acid, and water, and correlated the results to aggregated structures in the organic phase. The mole ratios of TBP-HDBP mixtures had a non-linear effect on the extraction of Dy3+ and water from 0.2 M HNO3, indicating synergism. In 2 M HNO3, the TBP:HDBP mole ratio had a more linear relation to Dy3+ and water extraction, so the synergistic effect was less pronounced than in the low acid system. The extraction of nitric acid showed no synergistic effect and follows closely what would be expected in a system using TBP only. The small-angle X-ray scattering (SAXS) data of the 0.2 M acid system showed maximum contrast at a TBP:HDBP mole ratio of 0.25, so that the synergistic mixture is also the most aggregated at 0.2 M acid. The 2 M acid system also showed that the mixed system is more aggregated than the end members, although this does not result in peak extraction. Previous studies of synergistic extraction of metal cations explain the enhanced extraction by increased dehydration of the metal ion. Although our data do not rule out the formation of mixed complexes according to the classical mechanism of synergism, our evidence of increased water extraction and aggregate formation in systems combining TBP and HDBP are complementary to the metal-centric dehydration aspects of the process. The findings in this study give insights into the complex chemistry of solvent extraction, providing a possible link between formation of aggregates in the organic phase and synergistic extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.