Abstract
The flexible pressure sensor has attracted much attention due to its wearable and conformal advantage. All the same, enhancing its electrical and structural properties is still a huge challenge. Herein, a flexible integrated pressure sensor (FIPS) composed of a solid silicone rubber matrix, composited with piezoelectric powers of polyacrylonitrile/Polyvinylidene fluoride (PAN/PVDF) and conductive silver-coated glass microspheres is first proposed. Specifically, the mass ratio of the PAN/PVDF and the rubber is up to 4:5 after mechanical mixing. The output voltage of the sensor with composite PAN/PVDF reaches 49 V, which is 2.57 and 3.06 times that with the single components, PAN and PVDF, respectively. In the range from 0 to 800 kPa, its linearity of voltage and current are all close to 0.986. Meanwhile, the sensor retains high voltage and current sensitivities of 42 mV/kPa and 0.174 nA/kPa, respectively. Furthermore, the minimum response time is 43 ms at a frequency range of 1–2.5 Hz in different postures, and the stability is verified over 10,000 cycles. In practical measurements, the designed FIPS showed excellent recognition abilities for various gaits and different bending degrees of fingers. This work provides a novel strategy to improve the flexible pressure sensor, and demonstrates an attractive potential in terms of human health and motion monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.