Abstract

In our investigation of poly(vinylidene fluoride) (PVDF) films embedded with Au-BaTiO3 (AuBT) nanoparticles, we noted a synergistic improvement in both thermal stability and dielectric properties. PVDF films with varying concentrations of AuBT were expertly fabricated. Remarkably, the films retained their flexibility even at a high volume fraction of filler (f AuBT = 0.5). The predominant phases of PVDF (α, β, and γ) were observed. An increase in f AuBT resulted in a modest decrease in the melting temperature, while simultaneously causing a significant 40% increase in thermal conductivity compared to pure PVDF. The dielectric permittivity reached ∼160 at 1 kHz, while maintaining a loss tangent of ∼0.05. These improvements were attributed to discrete Au growth on BT particles, hindering conduction in PVDF. The rise in dielectric response resulted from interfacial polarization and inherent high dielectric permittivity of BT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.