Abstract
In proton acceleration from laser-irradiated thin foil targets, adding foams on the front surface or connecting a helical coil on the rear surface of the foil has proven to be an effective scheme to enhance proton energy. In this paper, we make the first attempt to incorporate the above two enhancement schemes for laser-proton acceleration by simultaneously adding foams and connecting a helical coil to a thin foil target. By utilizing such integrated targets in the experiment, focused beams were generated. The maximum proton energy and the number of energetic protons are apparently enhanced. Moreover, quasi-monoenergetic peaks were formed at the high-energy end of the spectra. Particle-in-cell plasma simulations and electromagnetic beam dynamics simulations show that the double-layer target not only enhances the energy of protons but also leads to a multiple-fold increase in the number of escaped electrons, which results in an enhanced post-acceleration in helical coil subsequently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.