Abstract
The combination of tumor ablation and immunotherapy is a promising strategy against tumor relapse and metastasis. Photothermal therapy (PTT) triggers the release of tumor-specific antigens and damage associated molecular patterns (DAMPs) in-situ. However, the immunosuppressive tumor microenvironment restrains the activity of the effector immune cells. Therefore, systematic immunomodulation is critical to stimulate the tumor microenvironment and augment the anti-tumor therapeutic effect. To this end, polyethylene glycol (PEG)-stabilized platinum (Pt) nanoparticles (Pt NPs) conjugated with a PD-L1 inhibitor (BMS-1) through a thermo-sensitive linkage were constructed. Upon near-infrared (NIR) exposure, BMS-1 was released and maleimide (Mal) was exposed on the surface of Pt NPs, which captured the antigens released from the ablated tumor cells, resulting in the enhanced antigen internalization and presentation. In addition, the Pt NPs acted as immune adjuvants by stimulating dendritic cells (DCs) maturation. Furthermore, BMS-1 relieved T cell exhaustion and induced the infiltration of effector T cells into the tumor tissues. Thus, Pt NPs can ablate tumors through PTT, and augment the anti-tumor immune response through enhanced antigen presentation and T cells infiltration, thereby preventing tumor relapse and metastasis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.