Abstract

Bladder cancer is a common malignant tumor of the urinary system with the potential to be treated by nano drug delivery system. The current work describes the synthesis and characterization of a novel nanomaterial to construct a nano-carrier based on 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatecholine (POPC) loaded doxorubicin (DOX) and embedded with gold nanoparticles and poly(N-isopropyl acrylamide) (PNIPAM) (GNPS@PNIPAM-POPC-DOX, GPPD). The dual-sensitive nanosystem gives simultaneous photothermal treatment and chemotherapy for bladder cancer. In vitro and in vivo properties were assessed using bladder cancer cell lines and mice and GPPD system distribution, tumor inhibition, and biocompatibility are reported. The system had favorable stability, low biological toxicity, controlled release efficiency, photothermal synergistic action, efficient photothermal transition, and favorable tumor suppressive effects. As a result, GPPD is a potential therapeutic approach for bladder cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.