Abstract
Mixed metallic oxides are getting increasing attention as novel electrode materials for energy conversion devices. However, low mixed ionic-electronic conductivity and high operating temperature hamper the practical applications of these devices. This study reports an effective strategy to improve the conductivity and performance of the fuel cell at low temperature by partially incorporating graphene in the Li0.1Cu0.2Zn0.7-oxide (LCZ) composite. The proposed cathode material is synthesized via the cost effective conventional solid-state route. Graphene incorporated LCZ shows excellent performance, which is attributed to the favorable charge transport paths offering low area-specific resistance. An X-ray diffractometer (XRD) and scanning electron microscope (SEM) are employed for microstructural and surface morphological analyses, respectively. Electrical conductivities of all the materials are determined by the DC four probe method, and interestingly, LCZ-1.5% graphene exhibits an excellent conductivity of 3.5 S/cm in air atmosphere at a temperature of 450 °C with a minimum value of 0.057 Ωcm2 area-specific resistance (ASR) that demonstrates significantly good performance. Moreover, the three-layer fuel cell device is fabricated using sodium carbonated Sm0.2Ce0.8O (NSDC) as an electrolyte, which can operate at low temperatures exhibiting open circuit voltage 0.95 V and shows a peak power density, i.e., 267.5 mW/cm2 with hydrogen as the fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.