Abstract

ABSTRACTIn this study, two‐dimensional organic montmorillonite (OMMT) and one‐dimensional needlelike ZnO were used as flame retardants of polystyrene (PS). Polystyrene/organic montmorillonite (PMT) and polystyrene/organic montmorillonite/zinc oxide nanocomposites (PMZs) with different weight ratios were prepared by melt intercalation. Information on the morphologies and structures of the PS nanocomposites was obtained with Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate that a mixed exfoliated–intercalated structure was observed in the PMT and PMZs. Dynamic mechanical thermal analysis showed that both the storage modulus and glass‐transition temperature values of the PMT and PMZs were significantly improved compared with those of the neat PS. The mechanical property tests showed that the bending modulus values of both PM5 (PS/OMMT weight ratio = 95:5) and PMZs increased compared with that of pristine PS. PMZ1 (PS/OMMT/ZnO weight ratio = 94:5:1) provided no decrease in the tensile strength in comparison with PS. A synergistic effect was observed between OMMT and ZnO; this resulted in improvements in the flame retardancy and dynamic mechanical properties in the PMZs. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43047.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.