Abstract

Therapeutic effectiveness of biogenically synthesized Woodfordia fruticosa nano-gold particles (WfAuNPs) has been claimed in this study which prevents microbial adhesion and enhanced wound healing potential on Wistar albino rats. The synthesized WfAuNPs were characterized using several biophysical techniques such as UV–Visible Spectroscopy (UV–vis), X-Ray Diffraction (XRD), Dynamic Light Scattering (DLS), Zeta Potential, Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The synthesized WfAuNPs in the size range of 10–20nm were used to develop 1% Carbopol® 934 based nano gold formulation (WfAuNPs-Carbopol® 934). The WfAuNPs-Carbopol® 934 nanoformulation was evaluated using viscosity and spreadability measurements. The wound healing potential of WfAuNPs-Carbopol® 934 monitored up to 12days was confirmed by performing wound contraction (%), epithelialization, and histopathological studies done in vivo on Wistar albino rats. The hydroxyproline content was also measured in the re-epithelized skin for quantification of collagen content. The effects of WfAuNPs on microbial adhesion leading to biofilm formation were evaluated against Candida albicans and Cryptococcus neoformans fungal strains. The respective Minimum Inhibitory Concentration (MIC80), Biofilm Inhibitory Concentration (BIC80) and Biofilm Eradication Concentration (BEC80) values of C. albicans was found to be 16, 32, 256μg/ml respectively while for C. neoformans it was recorded to be 32, 64, 256μg/ml respectively. Data obtained, confirmed the effectiveness in preventing microbial adhesion and wound healing potential of the WfAuNPs as compared to current marketed formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.