Abstract

The intumescent flame retardant (IFR) technique is an alternative to halogen-based flame retardants for reducing fire hazards in polymers. However, IFR has drawbacks like unsatisfactory flame-retardant efficiency and high loading requirements. In this study, MIL-125 (Ti-based metal–organic framework) is added to ABS/IFR composites to improve flame retardancy and reduce smoke emissions. Thermogravimetric analysis (TGA) results indicate that combining ammonium polyphosphate (APP) and expandable graphite (EG) increases charred residue and slows mass loss compared with the original ABS resin. The ABS/IFR/MIL-125 system stabilizes the char layer, serving as a protective shield against combustible gases during combustion. Additionally, MIL-125 enhances performance in microscale combustion calorimetry (MCC) flammability testing. In fire tests (UL-94, limiting oxygen index (LOI), and cone calorimeter), the ABS/IFR/MIL-125 system achieves a UL-94 V0 rating and the highest LOI value of 31.5% ± 0.1%. Peak heat lease rate (PHRR) values in the cone calorimeter are reduced by 72% with 20 wt.% of additives, and smoke production decreases by 53% compared with neat ABS. These results demonstrate the efficient synergistic effects of MIL-125 and IFR additives in improving the formation and stability of the intumescent char layer, thereby protecting ABS from intense burning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.