Abstract

Designing efficient ternary nanostructures is a feasible approach for energy production under simulated solar irradiation. In this study, excellent photoexcited charge carrier separation and enhanced visible-light response were achieved with nitrogen-doped titania nanobelts (N-TNBs), whose 1D geometry facilitated the fabrication of a heterostructure with SnS2 on the surface of graphitic carbon nitride (g-C3N4). We established the design of SnS2@N-TNB and SnS2@N-TNB/g-C3N4 heterostructures by in situ hydrothermal and ultrasonication processes, and achieved commendable simulated solar light driven photocatalytic H2 generation. UV–vis diffuse reflectance spectroscopy analysis revealed a red shift in the absorption spectra of the SnS2@N-TNB and SnS2@N-TNB/g-C3N4 samples. The H2 produced via SnS2@N-TNB-10/g-C3N4 (6730.8 µmol/g/h) was 2.6 times higher than that produced by SnS2@N-TNB (2515.1 µmol/g/h), and 299 times higher than that produced by N-TNB (22.5 µmol/g/h). The improved photocatalytic H2 production was attributed to the maximum interface contact between SnS2@N-TNB and g-C3N4, and to the improved visible-light absorption and effective charge-carrier separation. Therefore, the present study provides novel insights for combining the advantages of ternary materials to improve the conversion of solar energy to H2 fuel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.