Abstract

Sulfated polysaccharides (SPs) extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis) were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation) and low cytotoxicity (MTT assay) at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR) and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.). Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents.

Highlights

  • Latin America has an important and diverse group of seaweed species [1]

  • sulfated polysaccharides (SPs) from Eisenia arborea and Solieria filiformis showed the highest antiviral activities and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.)

  • Antiviral activity of SPs against Measles virus (MeV) was evaluated by syncytia reduction inhibition assays at concentrations of 0.01, 0.1, 1, and 5 μg/mL of each compound

Read more

Summary

Introduction

Latin America has an important and diverse group of seaweed species [1]. One of the goals of seaweeds exploitation is to diversify their application by screening their diverse bioactive compounds, which remain unexplored in nutraceutical and pharmaceutical areas [3]. An increasing number of biological activities of seaweed polysaccharides have been reported in the last decades, where sulfated polysaccharides (SPs) are among the most studied compounds [5]. SPs include a complex group of macromolecules with numerous activities such as antioxidant [6, 7], antitumor [8, 9], anticoagulant [6], anti-inflammatory [6, 10], and antiviral [11, 12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call