Abstract

We find that substance P (SP) and insulin-like growth factor-1 (IGF-1) demonstrate a synergistic effect on the stimulation of rabbit corneal epithelial migration in an organ culture. The addition of either SP or IGF-1 alone did not affect epithelial migration, while the combination of SP and IGF-1 stimulated epithelial migration in a dose-dependent fashion. The synergistic effects of SP and IGF-1 on corneal epithelial migration were nulled by the addition of a SP antagonist or enkephalinase. Among neurotransmitters (vasoactive intestinal peptide, calcitonin gene-related peptide, acethylcholine chloride, norepinephrine, serotonin) or tachykinins (neurokinin A, neurokinin B, kassinin, eledoisin, physalaemin), only SP demonstrated a synergistic effect with IGF-1 on cellular migration. In contrast, the combination of SP and IGF-1 did not affect the incorporation of 3H-thymidine into corneal epithelial cells. The attachment of the corneal epithelial cells to fibronectin, collagen type IV, and laminin matrices increased after treatment of the cells with SP and IGF-1, but SP or IGF-1 by themselves did not affect the attachment of the cells to these extracellular matrix proteins. An identical synergistic effect on corneal epithelial migration was observed when an NK-1 receptor agonist was used in place of SP, suggesting the synergistic effect of SP and IGF-1 might be mediated through the NK-1 receptor system. These results suggest that the maintenance of the normal integrity of the corneal epithelium might be regulated by both humoral and neural factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call