Abstract

Radiosurgery has been recognized as a reasonable treatment for metastatic brain tumors. Increasing the radiosensitivity and synergistic effects are possible ways to improve the therapeutic efficacy of specific regions of tumors. c-Jun-N-terminal kinase (JNK) signaling regulates H2AX phosphorylation to repair radiation-induced DNA breakage. We previously showed that blocking JNK signaling influenced radiosensitivity in vitro and in an in vivo mouse tumor model. Drugs can be incorporated into nanoparticles to produce a slow-release effect. This study assessed JNK radiosensitivity following the slow release of the JNK inhibitor SP600125 from a poly (DL-lactide-co-glycolide) (LGEsese) block copolymer in a brain tumor model. A LGEsese block copolymer was synthesized to fabricate SP600125-incorporated nanoparticles by nanoprecipitation and dialysis methods. The chemical structure of the LGEsese block copolymer was confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The physicochemical and morphological properties were observed by transmission electron microscopy (TEM) imaging and measured with particle size analyzer. The blood-brain barrier (BBB) permeability to the JNK inhibitor was estimated by BBBflammaTM 440-dye-labeled SP600125. The effects of the JNK inhibitor were investigated using SP600125-incorporated nanoparticles and by optical bioluminescence, magnetic resonance imaging (MRI), and a survival assay in a mouse brain tumor model for Lewis lung cancer (LLC)-Fluc cells. DNA damage was estimated by histone γH2AX expression and apoptosis was assessed by the immunohistochemical examination of cleaved caspase 3. The SP600125-incorporated nanoparticles of the LGEsese block copolymer were spherical and released SP600125 continuously for 24h. The use of BBBflammaTM 440-dye-labeled SP600125 demonstrated the ability of SP600125 to cross the BBB. The blockade of JNK signaling with SP600125-incorporated nanoparticles significantly delayed mouse brain tumor growth and prolonged mouse survival after radiotherapy. γH2AX, which mediates DNA repair protein, was reduced and the apoptotic protein cleaved-caspase 3 was increased by the combination of radiation and SP600125-incorporated nanoparticles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call