Abstract
Wetlands provide essential ecosystem services, including nutrient cycling, flood protection, and biodiversity support, that are sensitive to changes in wetland hydrology. Wetland hydrological inputs come from precipitation, groundwater discharge, and surface run-off. Changes to these inputs via climate variation, groundwater extraction, and land development may alter the timing and magnitude of wetland inundation. Here, we use a long-term (14-year) comparative study of 152 depressional wetlands in west-central Florida to identify sources of variation in wetland inundation during two key time periods, 2005–2009 and 2010–2018. These time periods are separated by the enactment of water conservation policies in 2009, which included regional reductions in groundwater extraction. We investigated the response of wetland inundation to the interactive effects of precipitation, groundwater extraction, surrounding land development, basin geomorphology, and wetland vegetation class. Results show that water levels were lower and hydroperiods were shorter in wetlands of all vegetation classes during the first (2005–2009) time period, which corresponded with low rainfall conditions and high rates of groundwater extraction. Under water conservation policies enacted in the second (2010–2018) time period, median wetland water depths increased 1.35 m and median hydroperiods increased from 46 % to 83 %. Water-level variation was additionally less sensitive to groundwater extraction. The increase in inundation differed among vegetation classes with some wetlands not displaying signs of hydrological recovery. After accounting for effects of several explanatory factors, inundation still varied considerably among wetlands, suggesting a diversity of hydrological regimes, and thus ecological function, among individual wetlands across the landscape. Policies seeking to balance human water demand with the preservation of depressional wetlands would benefit by recognizing the heightened sensitivity of wetland inundation to groundwater extraction during periods of low precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.