Abstract

Objective: The difficulty in chronic diabetic wound healing remains the focus of clinical research. Photobiomodulation therapy (PBMT) with different wavelengths could exert different effects on wound healing, but the effects of combined red and blue light (BL) remained unclear. Methods: Diabetic rat wound model and diabetic wounded endothelial cell model were established to observe possible effects of PBMT using combined wavelengths for wound healing. Cells and animals were separated into four groups exposed to red and/or BL. Cell viability, apoptosis, and migration, as well as the expression level of nitric oxide (NO), vascular endothelial growth factor, interleukin-6, and tumor necrosis factor-α were measured in vitro. Diabetic rats were evaluated for wound closure rates, collagen deposition, inflammation intensity, and density of neovascularization after light irradiation. Results: PBMT using combined wavelengths significantly sped up the healing process with increasing angiogenesis density, collagen deposition, and alleviating inflammation in vivo. Moreover, combined wavelength irradiation promoted cell proliferation and migration, and NO production, as well as reduced reactive oxygen species and inflammation in vitro. Conclusions: PBMT using combined wavelengths performed a synergistic effect for promoting diabetic wound healing and would be helpful to explore a more efficient pattern toward chronic wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.