Abstract

Tetracycline (TC) as a typical emerging pollutant is becoming a serious threat to the environment and human health. A combined advanced oxidation technology of UV/Ozone (O3)/peroxydisulfate (PDS) process was developed to explore an efficient and economic treatment process of TC in wastewater. Furthermore, the reactive sites and transformation pathways of TC were explored and the toxicity of the intermediates was quantified with a quantitative structure-activity relationship (QSAR) assessment. The degradation performance of TC was substantially enhanced in UV/O3/PDS process with a kobs of 0.0949 min−1, which was 2.3 times higher than UV/O3 and 3.2 times than sole UV. The results demonstrated that there was a superior synergistic effect of PDS on UV/O3 processes for the degradation of TC. Electron paramagnetic resonance (EPR) analysis and quenching experiments show that •OH, SO4•−, O2•− and 1O2 all contributed to TC degradation in the UV/O3/PDS process and exhibited a synergistic effect, which inhibited the generation of harmful products. In addition, the UV/O3/PDS system can effectively degrade TC in a wide range of substrate concentrations and pH, and also showed excellent adaptability to various concentrations of anions (Cl− and HCO3−). This study proves the feasibility of UV/O3/PDS process for treating TC contaminated wastewater with complicated water matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call