Abstract
Our previous study identified osteonectin (ON) in a screen of factors made by Schwann cells (SCs) which promoted peripheral and central neurons survival and neuritogenesis, however, the mechanisms of ON promoting effects are largely unknown. In the present study, we investigated the effects of ON-deficient SC-conditioned medium (SCCM) and molecular mechanisms of ON, in regulating retinal ganglion cells (RGCs) survival and neurite outgrowth. Neonatal rat RGCs and SCs were purified by immunopanning technique. RGC survival and neuritogenesis reduced significantly when treated with either ON-null mice SCCM or ON-immunodepleted (IP) SCCM ( P<0.05). In contrast to wild type SCCM, in the presence of a tyrosine kinase receptor (Trk) inhibitor (K252a), ON-null mice SCCM-induced neuritogenesis were further reduced by 24%. The Trk-mediated signaling pathways became more sensitive to K252a inhibition in the absence of ON. We also showed the synergistic effects of ON and brain-derived neurotrophic factor (BDNF) in promoting RGCs growth and the involvement of ON in two major neurotrophin-mediated signaling pathways, PI-3K-Akt and MAPK-Erk1/2. ON alone activated Akt phosphorylation and increased survival. Blockage of TrkB signalling pathway by TrkB-Fc chimera (BDNF scavenger) or K252a in ON-treated cultures reduced Akt-P level significantly. This suggests that ON induces BDNF synthesis and secretion from RGCs. The enhancement of neuritogenesis and Erk1/2 phosphorylation by ON in BDNF-treated cultures further demonstrate the signaling pathways responsible for the synergistic effect of ON on BDNF-induced neurite outgrowth. To the best of our knowledge, this is the first report showing the synergistic effects of ON on classical neurotrophins which participate in the same signalling pathways in regulating RGC neurite outgrowth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.