Abstract

The development of high-performance electrode materials is crucial for advancing supercapacitor technology. The two-dimensional layered structure of MXene (Ti3C2Tx) presents high conductivity, abundant surface functional groups and accessible ion interaction between layers. However, the MXene suffers from the layer aggregation. To overcome this issue, we synthesized a composite material combining MXene with cobalt oxide (Co3O4) to enhance electrochemical performance in supercapacitors. MXene’s two-dimensional layered structure, high conductivity, and abundant surface functional groups allow for efficient ion intercalation, while Co3O4 contributes high theoretical capacitance and rich oxidation states. The resulted MXene/Co3O4 composite exhibits an impressive areal capacitance of 6.456F/cm2 at a current density of 3 mA/cm2, maintaining 90.52 % capacitance retention at 30 mA/cm2, and 81.37 % capacity after 5000 charge–discharge cycles. Additionally, the asymmetric supercapacitor (ASC) device fabricated using the MXene/Co3O4 composite achieves a power density of 6.41 mW/cm2 at an energy density of 0.37 mWh/cm2, with 82.3 % capacitance retention after 5000 cycles. These results demonstrate that the MXene/Co3O4 composite material is a promising candidate for high-performance supercapacitors, offering significant improvements in rate capability and long-term cycling stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.