Abstract

By influencing both the interfacial adhesion and the morphology, compatibilizers determine the mechanical properties of polymer blends. Here, we study the mechanical properties, in particular the fatigue crack propagation (FCP) of immiscible blends of poly(2,6-dimethyl-1,4-phenylene ether)/poly(styrene-co-acrylonitrile) (PPE/SAN), compatibilized with Janus nanoparticles (JPs) and linear polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM) triblock terpolymers. Synergistic effects of a mixture of both compatibilizers improve the FCP behavior and reveal the important role of interface stiffness and flexibility on the mechanical properties of polymer blends. The triblock terpolymer and JPs allow at the same time an elastic and stiff linkage at the blend interface and induce multiple deformation mechanisms such as crack bridging and matrix fibrillation that can dissipate energy and contribute to an improved FCP behavior. The presented concept allows tailoring macro-mechanical properties of immiscible polymer blends by adjusting blend morphology and interfacial properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.