Abstract

This paper explores the addition of h-BN and iron to Cu-based brake pads on the performance benefits. It also investigates the effect of graded layering by synthesizing three and four-layer brake pads by powder compaction and sintering route. The top one or two layers are made of Cu-based composite containing Fe, h-BN, and W, while the middle layer is pure Cu and, bottom steel plate. Two different compositions were explored for the composites by varying Fe content. From the two composite compositions, brake pads with single-layer composite or two-layer composite were synthesized. Characterization of brake pad specimens was carried out using density measurements, optical microscopy, scanning electron microscopy, energy dispersive spectroscopy. The brake pads were subjected to simulated braking tests at braking energy/cycle of 60, 96, and 136 K Joules. Wear rate, coefficient of friction, stopping distance, stopping time, and hardness were measured and compared among other brake pads. The brake pad containing single-layer Fe rich Cu composite showed the best performance in the simulated braking tests. EDS analysis of wear debris shows the formation of iron (boride, nitride, oxide) complex which is indicative of a surface with superior dry lubricating properties. This surface is a result of synergetic interaction between h-BN and Fe particles. The iron particles which are scattered in the Cu matrix composite act as low friction regions on the brake pad surface that interrupt the high friction regions on the Cu matrix, thus reducing the local and bulk temperature rise. The two-layer composite brake-pad showed performance intermediate to the two single-layer brake pads. No advantage due to higher thermal conductivities in Fe deficient composite was observed as the two composite layers, showed similar Fe contents in their matrix phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call