Abstract

This study investigates the effect of electromagnetic energy implementation in the use of electric, magnetic, and hybrid nanofluids for enhanced oil recovery. The challenge lies in comprehending the intricate interplay of these factors to enhance the recovery factor (RF) of oil. We conducted a comprehensive analysis of parameters influencing oil recovery at its primary, secondary, and tertiary stages using finite-element-based simulations. Transitioning to the secondary stage, we observe a positive correlation between increasing brine flow rates and heightened RF. In the tertiary stage, a comparative assessment of nanofluids, including magnetite (Fe3O4), zinc oxide (ZnO), and copper oxide (CuO), reveals that enhancing nanofluid concentrations up to 0.001 % positively impacts RF, with Fe3O4 leading the pack at 22.20 %, followed by ZnO at 21.00 %, and CuO at 11.02 %. The introduction of electromagnetic field consistently augments RF for all nanofluids by a minimum of 4.8 %. Furthermore, this study explores the effect of hybrid nanofluids on RF, which tend to exhibit lower RF values. However, the introduction of electromagnetic energy significantly enhances RF for all hybrid nanofluids. The study offers valuable insights into the potential of nanomaterials and electromagnetic methods in the oil and gas industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.