Abstract
Doping is a recognized method for enhancing catalytic performance. The introduction of strains is a common consequence of doping, although it is often overlooked. Differentiating the impact of doping and strain on catalytic performance poses a significant challenge. In this study, Cu-doped Bi catalysts with substantial tensile strain are synthesized. The synergistic effects of doping and strain in bismuth result in a remarkable CO2RR performance. Under optimized conditions, Cu1/6-Bi demonstrates exceptional formate Faradaic efficiency (>95%) and maintains over 90% across a wide potential window of 900 mV. Furthermore, it delivers an industrial-relevant partial current density of -317 mA cm-2 at -1.2 VRHE in a flow cell, while maintaining its selectivity. Additionally, it exhibits exceptional long-term stability, surpassing 120 h at -200 mA cm-2. Through experimental and theoretical mechanistic investigations, it has been determined that the introduction of tensile strain facilitates the adsorption of *CO2, thereby enhancing the reaction kinetics. Moreover, the presence of Cu dopants and tensile strain further diminishes the energy barrier for the formation of *OCHO intermediate. This study not only offers valuable insights for the development of effective catalysts for CO2RR through doping, but also establishes correlations between doping, lattice strains, and catalytic properties of bismuth catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.