Abstract

ObjectiveMultipotent stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for tissue regeneration. In the present study we decided to test the inductive effect of chitosan and transforming growth factor-β1 (TGFβ1) as a scaffold/factor combination on SHED proliferation and osteogenic differentiation. DesignCell proliferation was quantitatively assessed by PrestoBlue, live/dead assay was performed and cell attachment to chitosan scaffold was examined by scanning electron microscopy (SEM). For osteogenic differentiation analysis, alkaline phosphatase activity was quantified, cells were stained with Alizarin Red, and the lineage specific genes/proteins ALP, COL I, BSP, and OCN were analysed by real-time PCR and Western blot. ResultsSHED remained viable and attached well to the chitosan structure. Moreover, TGFβ1 significantly enhanced the proliferative activity of SHED on the chitosan scaffold. Our data further revealed that chitosan and TGFβ1 enhanced the osteogenic differentiation of SHED, as evidenced by high ALP activity, strong mineral deposition, and the up-regulation of ALP, COL I, BSP, and OCN gene/protein expression. ConclusionTogether, data from our study indicate that the combination of chitosan scaffolds and TGFβ1 enhanced proliferation and osteogenic differentiation of SHED. These findings suggest that the combined application of chitosan scaffold and TGFβ1 in conjunction with SHED might be beneficial for in vivo bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.