Abstract

AbstractIn this study, novel electrically conductive polymeric nanocomposites based on polybutylene terephthalate (PBT) filled with commercial carbon black (CB) and carbon nanotubes (CNTs) at different relative ratios have been investigated. Field emission scanning electron microscope (FESEM) analysis revealed how a good nanofiller dispersion was obtained both by introducing CB and CNT. Melt flow index measurements highlighted that the processability of the nanocomposites was heavily compromised at elevated filler amounts, and the viscosity percolation threshold was established at 3 wt% for CNTs and between 6 and 10 wt% for CB nanocomposites. Differential scanning calorimetry (DSC) measurements evidenced how the presence of CNT slightly increased the glass transition temperature of the materials, and an increase of 12°C of the crystallization temperature was obtained with a CNT amount of 6 wt%. Also the crystalline fraction was increased upon CNT addition. Electrical resistivity measurements evidenced that the most interesting results were obtained for nanocomposites with a total filler content of 6 wt% and a CNT/CB relative amount equal to 2:1. The synergistic effect obtained with the combination of both nanofillers allowed the achievement of a rapid surface heating through Joule effect even at applied voltages of 2 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.