Abstract

ObjectiveThis research explored the combined effects of transcranial direct current stimulation (tDCS) and aerobic exercise (AE) on executive function and specific serum biomarkers in healthy adults. MethodsSixty healthy young adults were randomly assigned into tDCS+AE, tDCS only, or AE only groups. Interventions were carried out for 20 days. Executive functions were evaluated using tasks such as the 2,3-back task, the spatial working memory task, the Stroop test, T test, and hexagonal obstacle jump task. Serum biomarkers, including brain-derived neurotrophic factor (BDNF), malondialdehyde (MDA), superoxide dismutase (SOD), glutamate, glutathione peroxidase 4 (GPX4) and iron ion, were analyzed pre- and post-intervention. ResultsThe tDCS+AE group showed superior enhancements in executive function, evidenced by improved accuracy rates in 2,3-back tasks, better performance in the staircase task, and reduced reaction times in the incongruent reaction time of the Stroop task compared to other groups. Importantly, we found substantial changes in serum biomarkers: increased levels of BDNF and SOD, and decreased levels of MDA and glutamate in the tDCS+AE group. These changes were significantly different when compared with the tDCS and AE only groups. Notably, these alterations in serum biomarkers were correlated with improvements in executive function tasks, thus offering a potential physiological basis for the cognitive improvements witnessed. ConclusionThe combined tDCS and AE intervention effectively improved executive function in healthy young adults, with the improvements linked to changes in key serum biomarkers. The results emphasize the potential of combined tDCS and AE interventions in engaging multiple physiological pathways to enhance executive function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.