Abstract

Microwave-assisted pyrolysis is one of the most efficient methods for solid waste management. This study employed microwave-assisted catalytic co-pyrolysis to convert Paraffin wax (PW) and rice straw (RS) into valuable char, gas, and oil products. KOH and graphite were used as the catalyst and susceptor, respectively. The RS and PW blend served as the feedstock (with a blend ratio of 0–10 g). The yields of co-pyrolysis at different blending ratios of RS: PW exhibited variations in char content (ranging from 9.8% to 22.6% by wt.), oil production (ranging from 34.1% to 76.9% by wt.), and gas formation (ranging from 13.2% to 47.5% by wt.). The effects of the RS: PW ratio on the average heating rate, feedstock conversion, and product yields were also investigated. Analyses were performed to assess the synergistic impacts on product yields, average heating rates, and conversion factors. Notably, co-pyrolysis synergy led to increased oil and char production. Furthermore, we conducted FTIR analysis on the oil and char produced through the catalytic co-pyrolysis of RS: PW. In conjunction with co-pyrolysis synergy, the catalyst facilitated the formation of amides, alkenes, aliphatic compounds, and aromatic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call