Abstract

Phynox is of high interest for biomedical applications due to its biocompatibility and corrosion resistance. However, some Phynox applications require specific surface properties. These can be imparted with suitable surface functionalizations of its oxide layer. The present work investigates the surface-initiated atom transfer radical polymerization (ATRP) of 2-methacryloyoxyethyl phosphorylcholine (MPC), 2-hydroxyethyl methacrylate (HEMA), and ATRP copolymerization of (HEMA-co-MPC) (block and statistic copolymerization with different molar ratios) on grafted Phynox substrates modified with 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) as initiator. It is found that ATRP (co)polymerization of these monomers is feasible and forms hydrophilic layers, while improving the corrosion resistance of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.