Abstract

Pure TiO2 and 3% Y-doped TiO2 (3% Y-TiO2) were prepared by a one-step hydrothermal method. Reduced TiO2 (TiO2-H2) and 3% Y-TiO2 (3% Y-TiO2-H2) were obtained through the thermal conversion treatment of Ar-H2 atmosphere at 500 °C for 3 h. By systematically comparing the crystalline phase, structure, morphological features, and photocatalytic properties of 3% Y-TiO2-H2 with pure TiO2, 3% Y-TiO2, and TiO2-H2, the synergistic effect of Y doping and reduction of TiO2 was obtained. All samples show the single anatase phase, and no diffraction peak shift is observed. Compared with single-doped TiO2 and single-reduced TiO2, 3% Y-TiO2-H2 exhibits the best photocatalytic performance for the degradation of RhB, which can be totally degraded in 20 min. The improvement of photocatalytic performance was attributed to the synergistic effect of Y doping and reduction treatment. Y doping broadened the range of light absorption and reduced the charge recombination rates, and the reduction treatment caused TiO2 to be enveloped by disordered shells. The remarkable feature of reduced TiO2 by H2 is its disordered shell filled with a limited amount of oxygen vacancies (OVs) or Ti3+, which significantly reduces the Eg of TiO2 and remarkably increases the absorption of visible light. The synergistic effect of Y doping, Ti3+ species, and OVs play an important role in the improvement of photocatalytic performances. The discovery of this work provides a new perspective for the improvement of other photocatalysts by combining doping and reduction to modify traditional photocatalytic materials and further improve their performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.