Abstract

Diamond-coated tools often fail due to coating graphitization and delamination caused by poor coating adhesion, large contact stress, and thermochemical reactions. To address these issues, this research utilized a combination of micro-nano double-layer diamond coating, WS2 coating, and micro-textures. The WS2 coating inhibits the graphitization of the diamond coating through a transfer film mechanism, while the micro-textures and nanocrystalline diamond coating store WS2, resulting in a prolonged lubrication life. Additionally, the influence of micro-texture on coating-substrate residual stress and coating-substrate mechanical interlocking was discussed, and it was proved that proper micro-textures effectively improve the coating adhesion. Under the same cutting flux conditions, taking coating peeling as the judging standard, the cutting distance of textured WS2/Micro-Nano diamond coating tool is more than three times that of ordinary, diamond-coated tools, which greatly improves the service life of the tool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call