Abstract

In the process of selecting and developing freshwater aquaculture species, yellow catfish (Tachysurus fulvidraco) have received widespread attention from Chinese farmers, fishery scientists and technologists. Achieving full artificial breeding of yellow catfish would help improve the quantity and quality of fingerlings supplied for large-scale production of this species. Temperature (T) and dissolved oxygen (DO) are the most important abiotic factors affecting the breeding efficiency of aquatic organisms. In this study, the synergistic effects of T and DO on fertilization rate (FR, %), hatching rate (HR, %) and deformity rate (DR, %) of hybrid yellow catfish (T. fulvidraco♀ × Pseudobagrus vachellii♂) were studied by central composite design (CCD) and response surface methodology. A quadratic regression model for the effects of T and DO on FR, HR and DR was established, and the combination of T and DO was optimized. The first and second order effects of T and DO on FR and HR were significant under the conditions of this experiment (P < 0.05). The first and second order effects of T on DR were significant (P < 0.05) but there was no significant effect of DO on DR (P > 0.05). T and DO had significant interaction effects on FR (P < 0.05). High T and high DO environments reduced FR and HR of yellow catfish eggs and increased DR of the newly hatched larvae. The optimal combination of T and DO was 26.0 °C and 8.3 mgL-1, respectively. Maximum FR and HR coincided with minimal DR whose predicted values were 87.2%, 89.1% and 2.7%, respectively, with reliability of 0.979. Maintaining T and DO in the best combination will help to improve breeding efficiency and ensure production of the highest quantity and quality of fingerlings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.