Abstract

Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated from effluent of two hospital and two municipal wastewater treatment plants (WWTPs) before and after disinfection. The results of network analysis showed that 8 genera were identified to be the main potential hosts of ARGs, including Mycobacterium, Ferruginibacter, Thermomonas, Morganella, Enterococcus, Bacteroides, Myroides and Romboutsia. The removal of ARGs and their possible bacterialhosts were synchronous and consistent by chlorine or ultraviolet (UV) disinfection in WWTPs. The mechanisms of ARB and ARGs removal, and conjugation transfer of RP4 plasmids by UV, chlorine and synergistic UV/chlorine disinfection was revealed. Compared to UV alone, ARB inactivation was improved 1.4 log and photoreactivation was overcomeeffectively by UV/chlorine combination (8 mJ/cm2, chlorine 2 mg/L). However, ARGs degradation was more difficult than ARB inactivation. Until UV dosage enhanced to 320 mJ/cm2, ARGs achieved 0.58–1.60 log removal. Meanwhile, when 2 mg/L of chlorine was combined with UV combination, ARGs removal enhanced 1–1.5 log. The synergistic effect of adding low-dose chlorine (1–2 mg/L) during UV radiation effectively improved ARB and ARGs removal simultaneously. The same synergistic effect also occurred in the horizontal gene transfer (HGT). Non-lethal dose chlorine (0.5 mg/L) increased the conjugation transfer frequency,which confirmed that the mRNA expression levels of type IV secretion system (T4SS) proteins vir4D, vir5B and vir10B were significantly enhanced. The risk of RP4 plasmid conjugation transfer was significantly reduced with UV/chlorine (UV ≥ 4 mJ/cm2, chlorine ≥ 1 mg/L). These findings may serve as valuable implications for assessing and controlling the risk of ARGs transfer and propagation in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call