Abstract
There has been extensive research into lithium-rich layered oxide materials as candidates for the nextgeneration of cathode materials in lithium-ion batteries, due to their high energy density and low cost; however, their poor cycle life and fast voltage fade hinder their large-scale commercial application. Here, we propose a novel cation/anion (Na+/PO43–) co-doping approach to mitigate the discharge capacity and voltage fade of a Co-free Li1.2Ni0.2Mn0.6O2 cathode. Our results show that the synergistic effect of cation/anion doping can promote long cycle stability and rate performance by inhibiting the phase transformation of the layered structure to a spinel or rock-salt structure and stabilizing the well-ordered crystal structure during long cycles. The co-doped sample exhibits an outstanding cycle stability (capacity retention of 86.7% after 150 cycles at 1 C) and excellent rate performance (153 mAh g−1 at 5 C). The large ionic radius of Na+ can expand the Li slab to accelerate Li diffusion and the large tetrahedral PO43– polyanions with high electronegativity stabilize the local structure to improve the electrochemical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.