Abstract

Ultrasonication has been mechanically applied widely in the recycling of spent lithium-ion (SLI) batteries while its influence on chemical pathways has barely been reported. In this study, ultrasonication and sulfate radicals were used in a coupling system to obtain efficient recoveries of Co and Li from SLI batteries. The synergistic effect of ultrasonication and sulfate radicals on recycling was quantitatively analysed by significance analysis and surface responses in a central composite design. The employment of persulfate significantly affected the whole recycling process during the sonication. Factors including acoustic time, operating powers, and temperature all had a significant effect on the recoveries of Co and Li. The maximum recovery efficiencies of Co and Li of 97.33% and 99.25%, respectively, and the minimum loss rate of Al of 4.13% were simultaneously obtained by the fitting predictor. The optimal combination of factors for the sonication system included an acoustic time (min) of 5.5, an operating power (W) of 168, a temperature (°C) of 86, and a ratio of cathode foil to S-solution (mg/mL) of 1:60. A moiety of cathode active material was directly separated from the aluminium collector by sulfate radical-related reactions. Co and Li cations dissolved from LiCoO2 by carbon dioxide radicals were reprecipitated by excess oxalate. The research demonstrated the positively synergistic influence caused by ultrasonication and sulfate radicals on achieving efficient recoveries of Co and Li from SLI batteries, explicitly expanding the technical choices for the recycling procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.