Abstract

Trichoderma longibrachiatum is a filamentous fungus used as a biological control agent against different plant diseases. The multifunctional secondary metabolites synthesized by Trichoderma, called peptaibols, have emerged as key elicitors in plant innate immunity. This study obtained a high-quality genome sequence for the T. longibrachiatum strain 40418 and identified two peptaibol biosynthetic gene clusters using knockout techniques. The two gene cluster products were confirmed as trilongin AIV a (11-residue) and trilongin BI (20-residue) using liquid chromatography coupled with tandem mass spectrometry. Further investigations revealed that these peptaibols induce plant resistance to Pseudomonas syringae pv tomato (Pst) DC3000 infection while triggering plant immunity and cell death. Notably, the two peptaibols exhibit synergistic effects in plant-microbe signaling interactions, with trilongin BI having a predominant role. Moreover, the induction of tomato resistance against Meloidogyne incognita showed similarly promising results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.