Abstract

In this study, a new way to produce tofu with lactic acid bacteria (Lactobacillus casei, L. casei) and salt coagulant (magnesium sulfate) has been developed and optimized in order to improve the quality characteristics and the storage stability. Processing parameters (bean-water ratio, inoculation amount, magnesium sulfate concentration and pressing time) of tofu were studied. Yield, water holding capacity (WHC), texture and sensory were measured for evaluating quality characteristics of tofu. Based on the single factor and response surface methodology (RSM), the optimized conditions of tofu were determined as follows: bean-water ratio was 1:4 g/mL, fermentation time was 5 h at 37°C when the inoculation amount was 4.0%, magnesium sulfate concentration was 2.0 mol/L and pressing time was 1 h. Under the optimum conditions, the yield of the tofu was 140.45 g, the WHC was 87.25 %, the hardness was 420.36 g, and the tofu had better sensory characteristics, soft, uniform texture, as well as good flavor. The shelf life and stability of tofu during storage were also evaluated under the optimum conditions. The results showed that fermented tofu had a longer shelf life than unfermented tofu at room temperature. Compared with the "pasteurization + low temperature" group and "low temperature" group, the fermented tofu in the "microwave + low temperature" group had a longer shelf life and better-quality properties during storage. Tofu, prepared by the lactic acid bacteria fermentation and salt coagulant, would be accepted as a new type of tofu according to its quality characteristics and storage stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.