Abstract

The production of plant-based dairy alternatives has been majorly focused on the improvement of sensorial, technological and nutritional properties, to be able to mimic and replace milk-based fermented products. The presence of off-flavours and antinutrients, the lack of production of dairy-like flavours or the metabolic inaccessibility of plant proteins are some of the challenges to overcome to generate plant-based dairy alternatives. However, in the present study, it is demonstrated how the synergetic effect of two LAB strains, when cocultured, can simultaneously solve those challenges when fermenting in four different plant-based raw materials: soy, pea, oat, and potato drinks (SPOP). The fermentation was performed through the mono- and co-culture of the two LAB strains isolated from Apis mellifera (honeybee): Leuconostoc pseudomesenteroides NFICC 2004 and Lactococcus lactis NFICC 2005. Firstly, the coculture of both strains demonstrated to increase the acidification rate of the four plant matrices. Moreover, L. pseudomesenteroides (LP) demonstrated to in situ produce high concentrations of mannitol when fructose was present as C-source. Furthermore, L. pseudomesenteroides, which encoded for PII-proteinase, demonstrated to break down SPOP proteins, releasing free amino acids that were used by L.lactis (LL) for growth and metabolism. Lastly, the analysis of their co-metabolic volatile performance showed the principal ability of removal of the main off-flavours found in SPOP, such as hexanal, 1-octen-3-ol, 2-pentylfuran, pentanal, octanal, heptanal, and nonanal, mainly led by L. pseudomesenteroides, as well as the production of dairy-like flavours, such as diacetyl and 3-methyl-1-butanol, triggered by L. lactis metabolism. Overall, these findings endorsed the use of honeybee isolated strains as starter cultures, demonstrated the potential of coupling genotypes and phenotypes of multiple strains to improve the organoleptic properties suggesting the combination of plant-based matrices for the generation of high-quality plant-based dairy alternatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call