Abstract
The self-assembly of amphiphilic macromolecules into various mesocrystals has attracted abiding interest. Although many interesting mesocrystals have been achieved, mesocrystals of a low coordination number (CN) such as simple cubic are rarely reported. Here we purposely design an AB-type multiblock copolymer to target exotic spherical phases of low CNs. Self-consistent field theory reveals that two sophisticated mechanisms are realized in the copolymer, that is, stretched bridging block and released packing frustration, synergistically leading to the formation of three spherical phases with extremely low CNs, including the simple cubic spheres (CN = 6), the cubic diamond spheres (CN = 4), and normally aligned hexagonal-packing spheres (6 < CN < 8) in a considerable parameter region. Moreover, we demonstrate that these exotic phases are hard to be stabilized by either of the two mechanisms individually.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.