Abstract
The suppression of the SOS response has been shown to enhance the in vitro activity of quinolones. Furthermore, Dam-dependent base methylation has an impact on susceptibility to other antimicrobials affecting DNA synthesis. Here, we investigated the interplay between these two processes, alone and in combination, in terms of antimicrobial activity. A genetic strategy was used employing single- and double-gene mutants for the SOS response (recA gene) and the Dam methylation system (dam gene) in isogenic models of Escherichia coli both susceptible and resistant to quinolones. Regarding the bacteriostatic activity of quinolones, a synergistic sensitization effect was observed when the Dam methylation system and the recA gene were suppressed. In terms of growth, after 24 h in the presence of quinolones, the Δdam ΔrecA double mutant showed no growth or delayed growth compared to the control strain. In bactericidal terms, spot tests showed that the Δdam ΔrecA double mutant was more sensitive than the ΔrecA single mutant (about 10- to 102-fold) and the wild type (about 103- to 104-fold) in both susceptible and resistant genetic backgrounds. Differences between the wild type and the Δdam ΔrecA double mutant were confirmed by time-kill assays. The suppression of both systems, in a strain with chromosomal mechanisms of quinolone resistance, prevents the evolution of resistance. This genetic and microbiological approach demonstrated the enhanced sensitization of E. coli to quinolones by dual targeting of the recA (SOS response) and Dam methylation system genes, even in a resistant strain model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.