Abstract

Despite significant progress in device performance, dye-sensitized solar cells (DSSCs) continue to fall short of their theoretical potential. Moreover, research in recent years needs to pay more attention to improving the device fabrication process. To achieve the theoretical efficiency limit, it is crucial to optimize the interface between the dye and TiO2 nanoparticles in the entire device stack. Our study indicates that optimizing the structure or size of the coadsorbents and implementing a monolayer adsorption process can be an effective strategy to reduce charge recombination and enhance light-harvesting properties. Our research aims to develop a surface-coating adsorbent plan that controls the TiO2 nanoparticle interface to achieve the radiative limit of power conversion efficiency (PCE). Specifically, we utilized 2-thiophenecarboxylic acid (THCA) or chenodeoxycholic acid (CDCA) as postinterfacial surface-coating adsorbents. Our results demonstrate that this approach effectively achieves the desired PCE limit. Combined with the coadsorbent structure engineering and interface optimization, the device increased the packing area on the TiO2 nanoparticles' surface, reaching an improved PCE of over 13.17% under simulated sunlight (1.5G), which is the highest efficiency of a porphyrin single dye-based DSSC. In particular, this practical approach was also applied to a large-area DSSC with an area of 3 cm2, yielding a remarkable PCE of 9.04%. Furthermore, when applied to a polymer gel electrolyte, this novel approach recorded the highest PCE of 11.16% with a long-term operational stability of up to 1000 h for the quasi-solid-state DSSCs. Our research findings provide a promising avenue for achieving high-performance DSSCs with ease of access and demonstrate practical applications as alternatives to conventional power sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.