Abstract

The purpose of this study was to confirm the antiproliferative and apoptotic induction potential of a saccharin and caffeine combination in ovarian cancer cells. The cell line used was Ovcar-3, and the cell viability was measured through a WST-8 assay, while a Chou-Talalay assay was used to confirm the synergistic effect of saccharin and caffeine on the ovarian cancer cells. A clonogenic assay, annexin V-FITC/PI-PE double-staining, and RT-PCR were performed to confirm the expression of genes that induce colony formation, cell viability, and apoptosis in ovarian cancer cells treated with the saccharin-caffeine combination. It was demonstrated that both saccharin and caffeine decreased the viability of Ovcar-3 cells, and the cell viability decreased even more significantly when the cells were treated with the combination of saccharin and caffeine. The clonogenic assay results showed that the number of colonies decreased the most when saccharin and caffeine were combined, and the number of colonies also significantly decreased compared to the single-treatment groups. Based on flow cytometry analysis using annexin V-FITC/PI-PE double-staining, it was confirmed that the decrease in cell viability caused by the combination of saccharin and caffeine was correlated with the induction of apoptosis. The results of the RT-PCR confirmed that the combined treatment of saccharin and caffeine promoted cell apoptosis by regulating the expression of apoptosis-inducing genes. These results demonstrate that the combination of saccharin and caffeine more efficiently inhibits the proliferation of Ovcar-3 cells and induces apoptosis in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.