Abstract

The encapsulation and immobilization technology provide a good growth environment for bacteria, strong protection ability, improved survival rate, and resistance to adverse environmental factors. Cellulose nanofibrils (CNF) with polyhydroxyl structure improve the elasticity, tensile properties, mechanical strength and gel strength of embedded particles through non-covalent forces. Polyethylene glycol (PEG) is a water-soluble polymer with unique carbon‑oxygen chain as the core skeleton. The ether bonds present in each unit give PEG extremely strong hydrophilicity and solubility. CNF and PEG to reinforce SA (sodium alginate) and PVA (polyvinyl alcohol)-SA embedded particle were adopted to treat ammonia nitrogen wastewater. The ammonia diffusion coefficients and oxygen diffusion coefficients of the CNF/PEG/SA and CNF/PEG/PVA-SA were 0.454 × 10−9, 0.286 × 10−9, 0.672 × 10−9 and 0.493 × 10−9 m2/s, respectively. The physicochemical properties of embedded particles were characterized by mass transfer characterization, SEM, XRD, FTIR, and BET analysis. The specific surface areas of CNF/PEG/SA and CNF/PEG/PVA-SA increased to 2.583 m2/g and 3.962 m2/g, respectively. The removal efficiency of NH4+-N, COD and TN in the CNF/PEG/PVA-SA system was 90 %, 74 % and 80 % at 30 °C. By HRT 8 h, the removal efficiency of NH4+-N, COD and TN by the reinforced system was 94.35 %, 63.07 % and 73.84 %, respectively. The neutral to weakly alkaline pH range showed the highest removal efficiencies of NH4+-N, COD, and TN, at 88.51 %, 74.95 %, and 77.56 %, respectively. The half-saturation constant K was 82.98 mg/L, and the maximum ammonia oxidation rate (Vmax) was 358.92 mgN/(L-particles-h). The reinforced system showed zero-order reaction kinetics. Nonlinear fitting of each initial NH4+-N concentration and ammonia oxidation rate was carried out using the Michaelis-Menten equation. In reinforced embedded particles, microbial genomic data (KEGG; MetaCyc database annotation) analysis was conducted. The reinforced system demonstrated enhanced strength, specific surface area, mass transfer properties, resistance to adverse external environmental factors, and microbial survival rate for the effective treatment of NH4+-N wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.