Abstract

Objectives The present study was carried out to study the protective effects of quercetin and α-lipoic acid alone and in combination against aluminum chloride induced neurotoxicity in rats. Materials and Methods The study consisted of eight groups, namely, Group 1: control rats, Group 2: rats receiving aluminium chloride 7 mg/kg body weight intraperitoneal route (i.p) for two weeks, Group 3: rats receiving quercetin 50 mg/kg body weight i.p. for two weeks, Group 4: rats receiving quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 5: rats receiving α-lipoic acid 20 mg/kg body weight i.p. for two weeks, Group 6: rats receiving lipoic acid 20 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks, Group 7: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight i.p. for two weeks, and Group 8: rats receiving α-lipoic acid 20 mg/kg body weight and quercetin 50 mg/kg body weight followed by aluminium chloride 7 mg/kg body weight i.p. for two weeks. The animals were killed after 24 hours of the last dose by cervical dislocation. Results Aluminium chloride treatment of rats resulted in significant increases in lipid peroxidation, protein carbonyl levels, and acetylcholine esterase activity in the brain. This was accompanied with significant decreases in reduced glutathione, activities of the glutathione reductase, and superoxide dismutase. Pretreatment of AlCl3 exposed rats to either quercetin or α-lipoic acid also restored altered lipid peroxidation and superoxide dismutase to near normal levels. Quercetin or α-lipoic acid pretreatment of AlCl3 exposed rats improved the protein carbonyl and reduced glutathione, glutathione reductase, and acetylcholine esterase activities in rat brains towards normal levels. Combined pretreatment of AlCl3 exposed rats with quercetin and α-lipoic acid resulted in a tendency towards normalization of most of the parameters. Conclusions Quercetin and α-lipoic acid complemented each other in protecting the rat brain against oxidative stress induced by aluminium chloride.

Highlights

  • Aluminium is ubiquitously distributed as environmental and is an industrial toxicant

  • AlCl3 treatment caused a significant increase of 242% in lipid peroxidation of brain when compared with that of control rats (p < 0.001)

  • Quercetin and a>]. α-Lipoic acid (ALA) by themselves caused no significant changes in lipid peroxidation in rat brains (p > 0.05)

Read more

Summary

Introduction

Aluminium is ubiquitously distributed as environmental and is an industrial toxicant. It is present in many food products. It has been implicated in skeletal, haematological, and neurological diseases [1]. Aluminium mimics metals such as magnesium, calcium, and iron in their biological functions and causes biochemical alterations [2, 3]. Through an increase in Fe accumulation and reactive oxygen species production [3]. The neutralization of reactive oxygen species is an important strategy to prevent the beginning or progression of pathological processes related to metal intoxication. ALA is an endogenous thiol antioxidant, which has effective potential

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call