Abstract

Vanadium dioxide (VO2) materials exhibit significant theoretical specific capacity, which is ascribed to multi-electron transfer reactions and unique tunneled structures. However, the low electronic conductivity and sluggish reaction kinetics of VO2 have impeded its further development. Hence, in this study, we employed a synergistic strategy of defect engineering and compositing with a calabash carbon matrix to reduce Zn2+ diffusion barriers and accelerate electron transfer. The VO2 cathode provided a high specific capacity at a low rate of 303 mA h g−1 at 0.1 A g−1 after 191 cycles, along with good rate performance (168 mA h g−1 at 10 A g−1) and satisfactory long-term stability (170 mA h g−1 at 1 A g−1 after 1100 cycles). The exhaustive structural analyses indicated that oxygen vacancies accelerated the Zn2+ diffusion rate, while a uniform calabash-like hollow carbon matrix improved electronic conductivity during cycling. Moreover, ex-situ measurements demonstrated that during discharge, the composite cathode transformed to layered Zn3+x(OH)2V2O7·2H2O, which then facilitated the subsequent intercalation of Zn2+. This cooperative strategy advances the practical application of aqueous zinc ion batteries by leveraging vanadium-based electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.