Abstract

The visible light absorption capacity and active sites of graphitic carbon nitride (GCN) are crucial roles for photocatalytic hydrogen (H2) production. However, the fabrication of ultrathin GCN nanosheets with enhanced light absorption via n-π* electronic transitions remain challenging. Here, we report on the successful preparation of porous ultrathin GCN nanosheets with activating n-π* electronic transitions simultaneously by microwave heating the mixture of urea and ammonium chloride (NH4Cl) compression strategy. Such the unique structure of GCN is composed of a curved porous thin layer and has numerous wrinkles that not only largely expand visible light absorption range to ∼ 650 nm but also significantly enhance the unmber of active sites and the mobility of photoexcited charges. The highest photocatalytic H2 production rate reached 99.1 μmol h−1 under visible light irradiation (λ > 420 nm), which is 8.8 folds higher than that of pristine GCN (11.2 μmol h−1). This work presents a promising and effective strategy for the engineering of GCN, which fully utilizes n-π* electronic transitions to largely expand the visible light absorption while enhancing the active sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call