Abstract
In this work, we explore the ability of manganese (II) phosphate (MnP) as a catalytic element for the determination of reactive oxygen species (ROS) in seminal plasma, when MnP is employed as modifier of a glassy carbon electrode. The electrochemical response of the manganese (II) phosphate-modified electrode shows a wave at around +0.65 V due to the oxidation of Mn2+ to MnO2+, which is clearly enhanced after addition of superoxide, the molecule considered as the mother of ROS. Once proved the suitability of manganese (II) phosphate as catalyst, we evaluate the effect of including a 0D (diamond nanoparticles) or a 2D (ReS2) nanomaterial in the sensor design. The system consisting of manganese (II) phosphate and diamond nanoparticles yielded the largest improvement of the response. The morphological characterization of the sensor surface was performed by scanning electron microscopy and atomic force microscopy, while cyclic and differential pulse voltammetry were employed for the electrochemical characterization of the sensor. After optimizing the sensor construction, calibration procedures by chronoamperometry were performed, leading to a linear relation between peak intensity and the superoxide concentration in the range of 1.1 10−4 M − 1.0 10−3 M with a limit of detection of 3.2 10−5 M. Seminal plasma samples were analysed by the standard addition method. Moreover, the analysis of samples fortified with superoxide at the μM level leads to recoveries of 95%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.