Abstract
This study aims to investigate the dry sliding behaviour of the 3D-printed acrylonitrile butadiene styrene (ABS) pins which were developed using the fused filament fabrication process and showed different internal geometries under varying normal loads and sliding speeds. Results noted in this study were analysed and related to their mechanical properties. It was also supported by the findings derived after the use of the wear transition mode along with the wear mechanisms of 3D-printed ABS. It was seen that the pin with a triangular flip internal structure showed the minimum coefficient of friction (COF) value and the wear rate distribution. The wear rate and the COF values were relatively dependent to the normal loads, sliding speeds and internal geometries. However, the correlation between tribological and mechanical properties of the 3D-printed ABS pin with different internal geometries is not statistically significant. The main wear mechanisms that caused a mild and severe wear were seen to be delamination, abrasion and lower fatigue wear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.